
Package: piecepackr (via r-universe)
September 16, 2024

Encoding UTF-8

Type Package

Title Board Game Graphics

Version 1.13.11

Description Functions to make board game graphics with the 'ggplot2',
'grid', 'rayrender', 'rayvertex', and 'rgl' packages.
Specializes in game diagrams, animations, and ``Print & Play''
layouts for the 'piecepack' <https://www.ludism.org/ppwiki> but
can make graphics for other board game systems. Includes
configurations for several public domain game systems such as
checkers, (double-18) dominoes, go, 'piecepack', playing cards,
etc.

License MIT + file LICENSE

URL https://trevorldavis.com/piecepackr/ (blog),

https://trevorldavis.com/R/piecepackr/ (pkgdown),

https://groups.google.com/forum/#!forum/piecepackr (forum)

BugReports https://github.com/piecepackr/piecepackr/issues

LazyData true

LazyLoad yes

Imports grid, gridGeometry, grImport2, grDevices, purrr, jpeg, png,
R6, rlang, stringr, tibble, tools, utils

Suggests animation (>= 2.7), ggplot2, gifski, gridpattern, magick,
pdftools, rayrender (>= 0.34.3), rayvertex (>= 0.10.4), readobj
(>= 0.4.0), rgl (>= 0.106.8), scales (>= 0.5.0), systemfonts,
testthat, tweenr, vdiffr, xmpdf (>= 0.1.1), XML (>= 3.99-0.9)

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Config/testthat/edition 3

Repository https://piecepackr.r-universe.dev

RemoteUrl https://github.com/piecepackr/piecepackr

1

https://www.ludism.org/ppwiki
https://trevorldavis.com/piecepackr/
https://trevorldavis.com/R/piecepackr/
https://groups.google.com/forum/#!forum/piecepackr
https://github.com/piecepackr/piecepackr/issues

2 piecepackr-package

RemoteRef HEAD

RemoteSha 82bd21b24733f14bf63ab0574d90204417ef2421

Contents

piecepackr-package . 2
aabb_piece . 4
AA_to_R . 5
animate_piece . 7
basicPieceGrobs . 9
font_utils . 10
game_systems . 11
geom_piece . 15
grid.cropmark . 18
grid.piece . 20
op_transform . 23
piece . 24
piece3d . 26
piecepackr-defunct . 28
piece_mesh . 29
pmap_piece . 31
pp_cfg . 32
pp_shape . 35
pp_utils . 38
render_piece . 39
save_ellipsoid_obj . 41
save_piece_images . 43
save_piece_obj . 44
save_print_and_play . 45
scale_x_piece . 47
spdx_license_list . 49

Index 50

piecepackr-package piecepackr: Board Game Graphics

Description

Functions to make board game graphics with the ’ggplot2’, ’grid’, ’rayrender’, ’rayvertex’, and ’rgl’
packages. Specializes in game diagrams, animations, and "Print & Play" layouts for the ’piecepack’
https://www.ludism.org/ppwiki but can make graphics for other board game systems. Includes
configurations for several public domain game systems such as checkers, (double-18) dominoes,
go, ’piecepack’, playing cards, etc.

https://www.ludism.org/ppwiki

piecepackr-package 3

Package options

The following piecepackr function arguments may be set globally via base::options():

piecepackr.at.inform If FALSE turns off messages when affine transformation support not detected
in active graphics device.

piecepackr.cfg Sets a new default for the cfg argument

piecepackr.check.cairo If FALSE don’t check the version of cairo

piecepackr.default.units Sets a new default for the default.units argument

piecepackr.envir Sets a new default for the envir argument

piecepackr.metadata.inform If FALSE turns off messages when support for embedding metadata
not detected.

piecepackr.op_angle Sets a new default for the op_angle argument

piecepackr.op_scale Sets a new default for the op_scale argument

piecepackr.trans Sets a new default for the trans argument

Author(s)

Maintainer: Trevor L Davis <trevor.l.davis@gmail.com> (ORCID)

Other contributors:

• Linux Foundation (Uses some data from the "SPDX License List" <https://github.com/spdx/license-
list-XML>) [data contributor]

• Delapouite <https://delapouite.com/> (Meeple shape extracted from "Meeple icon" <https://game-
icons.net/1x1/delapouite/meeple.html> / "CC BY 3.0" <https://creativecommons.org/licenses/by/3.0/>)
[illustrator]

• Creative Commons (‘save_print_and_play()‘ uses "license badges" from Creative Commons
to describe the generated print-and-play file’s license) [illustrator]

See Also

Useful links:

• blog: https://trevorldavis.com/piecepackr/

• pkgdown: https://trevorldavis.com/R/piecepackr/

• forum: https://groups.google.com/forum/#!forum/piecepackr

• Report bugs: https://github.com/piecepackr/piecepackr/issues

https://orcid.org/0000-0001-6341-4639
https://trevorldavis.com/piecepackr/
https://trevorldavis.com/R/piecepackr/
https://groups.google.com/forum/#!forum/piecepackr
https://github.com/piecepackr/piecepackr/issues

4 aabb_piece

aabb_piece Calculate axis-aligned bounding box for set of game pieces

Description

Calculate axis-aligned bounding box (AABB) for set of game pieces with and without an “oblique
projection”.

Usage

aabb_piece(
df,
cfg = getOption("piecepackr.cfg", pp_cfg()),
envir = getOption("piecepackr.envir"),
op_scale = getOption("piecepackr.op_scale", 0),
op_angle = getOption("piecepackr.op_angle", 45),
...

)

Arguments

df A data frame of game piece information with (at least) the named columns
“piece_side”, “x”, and “y”.

cfg Piecepack configuration list or pp_cfg object, a list of pp_cfg objects, or a
character vector referring to names in envir or a character vector referring to
object names that can be retrieved by base::dynGet().

envir Environment (or named list) containing configuration list(s).

op_scale How much to scale the depth of the piece in the oblique projection (viewed from
the top of the board). 0 (the default) leads to an “orthographic” projection, 0.5
is the most common scale used in the “cabinet” projection, and 1.0 is the scale
used in the “cavalier” projection.

op_angle What is the angle of the oblique projection? Has no effect if op_scale is 0.

... Ignored

Details

The “oblique projection” of a set of (x, y, z) points onto the xy-plane is (x+λ ∗ z ∗ cos(α), y+λ ∗
z ∗ sin(α)) where λ is the scale factor and α is the angle.

Value

A named list of ranges with five named elements x, y, and z for the axis-aligned bounding cube in
xyz-space plus x_op and y_op for the axis-aligned bounding box of the “oblique projection” onto
the xy plane.

AA_to_R 5

Examples

df_tiles <- data.frame(piece_side="tile_back", x=0.5+c(3,1,3,1), y=0.5+c(3,3,1,1),
suit=NA, angle=NA, z=NA, stringsAsFactors=FALSE)

df_coins <- data.frame(piece_side="coin_back", x=rep(4:1, 4), y=rep(4:1, each=4),
suit=1:16%%2+rep(c(1,3), each=8),
angle=rep(c(180,0), each=8), z=1/4+1/16, stringsAsFactors=FALSE)

df <- rbind(df_tiles, df_coins)

aabb_piece(df, op_scale = 0)
aabb_piece(df, op_scale = 1, op_angle = 45)
aabb_piece(df, op_scale = 1, op_angle = -90)

AA_to_R Helper functions for making geometric calculations.

Description

to_x, to_y, to_r, to_t convert between polar coordinates (in degrees) and Cartesian coordinates.
to_degrees and to_radians converts between degrees and radians. AA_to_R and R_to_AA con-
vert back and forth between (post-multiplied) rotation matrix and axis-angle representations of 3D
rotations. R_x, R_y, and R_z build (post-multiplied) rotation matrices for simple rotations around
the x, y, and z axes.

Usage

AA_to_R(angle = 0, axis_x = 0, axis_y = 0, axis_z = NA, ...)

R_to_AA(R = diag(3))

R_x(angle = 0)

R_y(angle = 0)

R_z(angle = 0)

to_radians(t)

to_degrees(t)

to_x(t, r)

to_y(t, r)

to_r(x, y)

to_t(x, y)

6 AA_to_R

Arguments

angle Angle in degrees (counter-clockwise)

axis_x First coordinate of the axis unit vector.

axis_y Second coordinate of the axis unit vector.

axis_z Third coordinate of the axis unit vector (usually inferred).

... Ignored

R 3D rotation matrix (post-multiplied)

t Angle in degrees (counter-clockwise)

r Radial distance

x Cartesian x coordinate

y Cartesian y coordinate

Details

pp_cfg uses polar coordinates to determine where the "primary" and "directional" symbols are
located on a game piece. They are also useful for drawing certain shapes and for making game
diagrams on hex boards.

piecepackr and grid functions use angles in degrees but the base trigonometry functions usually
use radians.

piecepackr’s 3D graphics functions save_piece_obj, piece, and piece3d use the axis-angle
representation for 3D rotations. The axis-angle representation involves specifying a unit vector in-
dicating the direction of an axis of rotation and an angle describing the (counter-clockwise) rotation
around that axis. Because it is a unit vector one only needs to specify the first two elements, axis_x
and axis_y, and we are able to infer the 3rd element axis_z. The default of axis = 0, axis_y =
0, and implied axis_z = 1 corresponds to a rotation around the z-axis which is reverse-compatible
with the originally 2D angle interpretation in grid.piece. In order to figure out the appropriate
axis-angle representation parameters R_to_AA, R_x, R_y, and R_z allow one to first come up with
an appropriate (post-multiplied) 3D rotation matrix by chaining simple rotations and then convert
them to the corresponding axis-angle representation. Pieces are rotated as if their center was at the
origin.

See Also

https://en.wikipedia.org/wiki/Axis-angle_representation for more details about the Axis-
angle representation of 3D rotations. See Trig for R’s built-in trigonometric functions.

Examples

to_x(90, 1)
to_y(180, 0.5)
to_t(0, -1)
to_r(0.5, 0)
all.equal(pi, to_radians(to_degrees(pi)))
default axis-angle axis is equivalent to a rotation about the z-axis
all.equal(AA_to_R(angle=60), R_z(angle=60))
axis-angle representation of 90 rotation about the x-axis

https://en.wikipedia.org/wiki/Axis-angle_representation

animate_piece 7

R_to_AA(R_x(90))
find Axis-Angle representation of first rotating about x-axis 180 degrees
and then rotating about z-axis 45 degrees
R_to_AA(R_x(180) %*% R_z(45))

animate_piece Animate board game pieces

Description

animate_piece() animates board game pieces.

Usage

animate_piece(
dfs,
file = "animation.gif",
...,
annotate = TRUE,
.f = piecepackr::grid.piece,
cfg = getOption("piecepackr.cfg", NULL),
envir = getOption("piecepackr.envir", game_systems("sans")),
n_transitions = 0L,
n_pauses = 1L,
fps = n_transitions + n_pauses,
width = NULL,
height = NULL,
ppi = NULL,
new_device = TRUE,
annotation_scale = NULL

)

Arguments

dfs A list of data frames of game data to plot.

file Filename to save animation unless NULL in which case it uses the current graph-
ics device.

... Arguments to pmap_piece

annotate If TRUE or "algebraic" annotate the plot with “algrebraic” coordinates, if FALSE
or "none" don’t annotate, if "cartesian" annotate the plot with “cartesian” co-
ordinates.

.f Low level graphics function to use e.g. grid.piece(), piece3d(), piece(),
or piece_mesh().

cfg A piecepackr configuration list

envir Environment (or named list) of piecepackr configuration lists

8 animate_piece

n_transitions Integer, if over zero (the default) how many transition frames to add between
moves.

n_pauses Integer, how many paused frames per completed move.

fps Double, frames per second.

width Width of animation (in inches). Inferred by default.

height Height of animation (in inches). Inferred by default.

ppi Resolution of animation in pixels per inch. By default set so image max 600
pixels wide or tall.

new_device If file is NULL should we open up a new graphics device?
annotation_scale

Multiplicative factor that scales (stretches) any annotation coordinates. By de-
fault uses attr(df, "scale_factor") %||% 1.

Value

Nothing, as a side effect creates an animation.

Examples

Basic tic-tac-toe animation
dfs <- list()
d.frame <- function(piece_side = "bit_back", ..., rank = 1L) {

data.frame(piece_side = piece_side, ..., rank = rank,
cfg = "checkers1", stringsAsFactors = FALSE)

}
df <- d.frame("board_back", suit = 2L, rank = 3L, x = 2, y = 2, id = "1")
dfs[[1L]] <- df
df <- rbind(df, d.frame(suit = 1L, x = 2, y = 2, id = "2"))
dfs[[2L]] <- df
df <- rbind(df, d.frame(suit = 2L, x = 1, y = 2, id = "3"))
dfs[[3L]] <- df
df <- rbind(df, d.frame(suit = 1L, x = 3, y = 1, id = "4"))
dfs[[4L]] <- df
df <- rbind(df, d.frame(suit = 2L, x = 1, y = 3, id = "5"))
dfs[[5L]] <- df
df <- rbind(df, d.frame(suit = 1L, x = 1, y = 1, id = "6"))
dfs[[6L]] <- df
df <- rbind(df, d.frame(suit = 2L, x = 3, y = 3, id = "7"))
dfs[[7L]] <- df
df <- rbind(df, d.frame(suit = 1L, x = 2, y = 1, id = "8"))
dfs[[8L]] <- df

Press enter to walk through moves in a "game" in new graphics device
if (interactive()) {

animate_piece(dfs, file = NULL)
}

Save GIF of game with animation transitions
Not run: # May take more than 5 seconds on CRAN servers

basicPieceGrobs 9

if ((requireNamespace("animation", quietly = TRUE) ||
requireNamespace("gifski", quietly = TRUE)) &&
requireNamespace("tweenr", quietly = TRUE)) {
file <- tempfile("tic-tac-toe", fileext = ".gif")
animate_piece(dfs, file = file,

n_transitions = 5L, n_pauses = 2L, fps = 9)
}

End(Not run)

basicPieceGrobs Piece Grob Functions

Description

basicPieceGrob is the most common “grob” function that grid.piece uses to create grid graph-
ical grob objects. picturePieceGrobFn is a function that returns a “grob” function that imports
graphics from files found in its directory argument.

Usage

basicPieceGrob(piece_side, suit, rank, cfg = pp_cfg())

picturePieceGrobFn(directory, filename_fn = find_pp_file)

pyramidTopGrob(piece_side, suit, rank, cfg = pp_cfg())

previewLayoutGrob(piece_side, suit, rank, cfg = pp_cfg())

Arguments

piece_side A string with piece and side separated by a underscore e.g. "coin_face"

suit Number of suit (starting from 1).

rank Number of rank (starting from 1)

cfg Piecepack configuration list or pp_cfg object.

directory Directory that picturePieceGrobFn will look in for piece graphics.

filename_fn Function that takes arguments directory, piece_side, suit, rank, and op-
tionally cfg and returns the (full path) filename of the image that the function
returned by picturePieceGrobFn should import.

Examples

if (requireNamespace("grid", quietly = TRUE) && piecepackr:::device_supports_unicode()) {
cfg <- pp_cfg(list(grob_fn.tile=basicPieceGrob, invert_colors=TRUE))
grid.piece("tile_face", suit=1, rank=3, cfg=cfg)

}

10 font_utils

May take more than 5 seconds on CRAN servers
try({

if (requireNamespace("grid", quietly = TRUE) && capabilities(c("cairo"))) {
cfg <- pp_cfg(list(grob_fn.tile=basicPieceGrob, invert_colors=TRUE))
directory <- tempdir()
save_piece_images(cfg, directory=directory, format="svg", angle=0)
cfg2 <- pp_cfg(list(grob_fn=picturePieceGrobFn(directory)))

grid::grid.newpage()
grid.piece("coin_back", suit=3, rank=5, cfg=cfg2)

}
})

font_utils Font utility functions

Description

get_embedded_font() returns which font is actually embedded by cairo_pdf() for a given char-
acter. has_font() tries to determine if a given font is available on the OS.

Usage

get_embedded_font(font, char)

has_font(font)

Arguments

font A character vector of font(s).

char A character vector of character(s) to be embedded by grid::grid.text()

Details

get_embedded_font() depends on the suggested pdftools package being installed and R being
compiled with Cairo support. has_font() depends on either the suggested systemfonts (pre-
ferred) or pdftools packages being installed.

Value

get_embedded_font() returns character vector of fonts that were actually embedded by cairo_pdf().
NA’s means no embedded font detected: this either means that no font was found or that a color emoji
font was found and instead of a font an image was embedded.

game_systems 11

Examples

if (requireNamespace("pdftools", quietly = TRUE) &&
capabilities("cairo") &&
!piecepackr:::is_cairo_maybe_buggy()) {

chars <- c("a", "\u2666")
fonts <- c("sans", "Sans Noto", "Noto Sans", "Noto Sans Symbols2")
try(get_embedded_font(fonts, chars))

}

if (requireNamespace("systemfonts", quietly = TRUE) ||
(requireNamespace("pdftools", quietly = TRUE) &&
capabilities("cairo")) && !piecepackr:::is_cairo_maybe_buggy()) {

try(has_font("Dejavu Sans"))
}

game_systems Standard game systems

Description

game_systems returns a list of pp_cfg objects representing several game systems and pieces.
to_subpack and to_hexpack will attempt to generate matching (piecepack stackpack) subpack
and (piecepack) hexpack pp_cfg R6 objects respectively given a piecepack configuration.

Usage

game_systems(style = NULL, round = FALSE, pawn = "token")

to_hexpack(cfg = getOption("piecepackr.cfg", pp_cfg()))

to_subpack(cfg = getOption("piecepackr.cfg", pp_cfg()))

Arguments

style If NULL (the default) uses suit glyphs from the default “sans” font. If "dejavu"
it will use suit glyphs from the "DejaVu Sans" font (must be installed on the
system).

round If TRUE the “shape” of “tiles” and “cards” will be “roundrect” instead of “rect”
(the default).

pawn If "token" (default) the piecepack pawn will be a two-sided token in a “halma”
outline, if "peg-doll" the piecepack pawn will be a “peg doll” style pawn, and
if "joystick" the piecepack pawn will be a “joystick” style pawn. Note for the
latter two pawn styles only pawn_top will work with grid.piece.

cfg List of configuration options

12 game_systems

Details

Contains the following game systems:

alquerque Boards and pieces in six color schemes for Alquerque

checkers1, checkers2 Checkers and checkered boards in six color schemes. Checkers are repre-
sented by a piecepackr “bit”. The “board” “face” is a checkered board and the “back” is a
lined board. Color is controlled by suit and number of rows/columns by rank. checkers1 has
one inch squares and checkers2 has two inch squares.

chess1, chess2 Chess pieces, boards, and dice in six color schemes. Chess pieces are represented
by a “bit” (face). The “board” “face” is a checkered board and the “back” is a lined board.
Color is controlled by suit and number of rows/columns by rank. chess1 has one inch squares
and chess2 has two inch squares. Currently uses print-and-play style discs instead of 3D
Staunton chess pieces.

dice Traditional six-sided pipped dice in six color schemes (color controlled by their suit).

dice_d4, dice_numeral, dice_d8, dice_d10, dice_d10_percentile, dice_d12, dice_d20 Polyhedral
dice most commonly used to play wargames, roleplaying games, and trading card games:

dice_d4 Four-sided dice in six color schemes (color controlled by their suit). Tetrahedrons
with the rank as a numeral at the top point.

dice_numeral Six-sided dice with numerals instead of pips in six color schemes (color con-
trolled by their suit).

dice_d8 Eight-sided dice in six color schemes (color controlled by their suit). Octahedrons
with the rank as a numeral at the top face.

dice_d10 Ten-sided dice in six color schemes (color controlled by their suit). Pentagonal
trapezohedrons with the rank as a numeral at the top face. The rank of ten is represented
by a zero.

dice_d10_percentile Ten-sided dice in six color schemes (color controlled by their suit). Pen-
tagonal trapezohedrons with the rank as a numeral followed by a zero at the top face. The
rank of ten is represented by a zero.

dice_d12 Twelve-sided dice in six color schemes (color controlled by their suit). Dodecahe-
drons with the rank as a numeral at the top face.

dice_d20 Twenty-sided dice in six color schemes (color controlled by their suit). Icosahe-
drons with the rank as a numeral at the top face.

dice_fudge “Fudge” dice in six color schemes (color controlled by their suit). “Fudge” dice have
three ranks "+", " ", and "-" repeated twice.

dominoes, dominoes_black, dominoes_blue, dominoes_green, dominoes_red, dominoes_white, dominoes_yellow
Traditional pipped dominoes in six color schemes (dominoes and dominoes_white are the
same). In each color scheme the number of pips on the “top” of the domino is controlled by
their “rank” and on the “bottom” by their “suit”. Supports up to double-18 sets.

dominoes_chinese, dominoes_chinese_black dominoes_chinese has Asian-style six-sided pipped
dice with white background and black and red pips. The “tile”’s are Chinese dominoes (1" x
2.5") whose number of pips are controlled by both their “rank” and their “suit”. dominoes_chinese_black
are like dominoes_chinese but the dice and dominoes have a black background and white and
red pips.

go Go stones and lined boards in six color schemes. Go stones are represented by a “bit” and the
board is a “board”. Color is controlled by suit and number of rows/columns by rank.

game_systems 13

meeples Standard 16mm x 16mm x 10mm “meeples” in six colors represented by a “bit”.

morris Various morris aka mills aka merels games in six colors. Color is controlled by suit and
“size” of morris board is controlled by rank e.g. “Six men’s morris” corresponds to a rank of
6 and “Nine men’s morris” corresponds to a rank of 9. Game pieces are represented by stones.

piecepack, dual_piecepacks_expansion, playing_cards_expansion, hexpack, subpack, piecepack_inverted
The piecepack is a public domain game system invented by James "Kyle" Droscha. See
https://www.ludism.org/ppwiki for more info about the piecepack and its accessories/expansions.

piecepack A standard piecepack. The configuration also contains the following piecepack
accessories:
piecepack dice cards An accessory proposed by John Braley. See https://www.ludism.

org/ppwiki/PiecepackDiceCards.
piecepack matchsticks A public domain accessory developed by Dan Burkey. See https:

//www.ludism.org/ppwiki/PiecepackMatchsticks.
piecepack pyramids A public domain accessory developed by Tim Schutz. See https:

//www.ludism.org/ppwiki/PiecepackPyramids.
piecepack saucers A public domain accessory developed by Karol M. Boyle at Me-

somorph Games. See https://web.archive.org/web/20190719155827/http://
www.piecepack.org/Accessories.html.

piecepack_inverted The standard piecepack with its color scheme inverted. Intended to aid
in highlighting special pieces in diagrams.

dual_piecepacks_expansion A companion piecepack with a special suit scheme. See https:
//trevorldavis.com/piecepackr/dual-piecepacks-pnp.html.

playing_cards_expansion A piecepack with the standard “French” playing card suits. See
https://www.ludism.org/ppwiki/PlayingCardsExpansion.

hexpack A hexagonal extrapolation of the piecepack designed by Nathan Morse and Daniel
Wilcox. See https://boardgamegeek.com/boardgameexpansion/35424/hexpack.

subpack A mini piecepack. Designed to be used with the piecepack to make piecepack
“stackpack” diagrams. See https://www.ludism.org/ppwiki/StackPack.

playing_cards, playing_cards_colored, playing_cards_tarot Poker-sized card components for
various playing card decks:

playing_cards A traditional deck of playing cards with 4 suits and 13 ranks (A, 2-10, J, Q,
K) plus a 14th “Joker” rank.

playing_cards_colored Like playing_cards but with five colored suits: red hearts, black
spades, green clubs, blue diamonds, and yellow stars.

playing_cards_tarot A (French Bourgeois) deck of tarot playing cards: first four suits are
hearts, spades, clubs, and diamonds with 14 ranks (ace through jack, knight, queen, king)
plus a 15th “Joker” rank and a fifth "suit" of 22 trump cards (1-21 plus an “excuse”).

reversi Boards and pieces for Reversi. "board_face" provides lined boards with colored back-
grounds. "board_back" provides checkered boards. "bit_face" / "bit_back" provides circular
game tokens with differently colored sides: red paired with green, black paired with white,
and blue paired with yellow.

See Also

pp_cfg for information about the pp_cfg objects returned by game_systems.

https://www.ludism.org/ppwiki
https://www.ludism.org/ppwiki/PiecepackDiceCards
https://www.ludism.org/ppwiki/PiecepackDiceCards
https://www.ludism.org/ppwiki/PiecepackMatchsticks
https://www.ludism.org/ppwiki/PiecepackMatchsticks
https://www.ludism.org/ppwiki/PiecepackPyramids
https://www.ludism.org/ppwiki/PiecepackPyramids
https://web.archive.org/web/20190719155827/http://www.piecepack.org/Accessories.html
https://web.archive.org/web/20190719155827/http://www.piecepack.org/Accessories.html
https://trevorldavis.com/piecepackr/dual-piecepacks-pnp.html
https://trevorldavis.com/piecepackr/dual-piecepacks-pnp.html
https://www.ludism.org/ppwiki/PlayingCardsExpansion
https://boardgamegeek.com/boardgameexpansion/35424/hexpack
https://www.ludism.org/ppwiki/StackPack

14 game_systems

Examples

cfgs <- game_systems(pawn = "joystick")
names(cfgs)

May take more than 5 seconds on CRAN servers
standard dice, meeples, and joystick pawns
if (requireNamespace("grid", quietly = TRUE) && piecepackr:::device_supports_unicode()) {

opt <- options(piecepackr.at.inform = FALSE)
grid::grid.newpage()
dice <- c("d4", "numeral", "d8", "d10", "d12", "d20")
cfg <- paste0("dice_", dice)
grid.piece("die_face", suit = c(1:6, 1), rank = 1:6,

cfg = cfg, envir = cfgs, x = 1:6, y = 1,
default.units = "in", op_scale = 0.5)

grid.piece("die_face", rank=1:6, suit=1:6,
x=1:6, y=2, default.units="in",
op_scale=0.5, cfg=cfgs$dice)

grid.piece("bit_face", suit=1:6,
x=1:6, y=3, default.units="in",
op_scale=0.5, cfg=cfgs$meeple)

grid.piece("pawn_top", suit=1:6,
x=1:6, y=4, default.units="in",
op_scale=0.5, cfg=cfgs$piecepack)

options(opt)
}

dominoes
if (requireNamespace("grid", quietly = TRUE)) {

grid::grid.newpage()
colors <- c("black", "red", "green", "blue", "yellow", "white")
cfg <- paste0("dominoes_", rep(colors, 2))
grid.piece("tile_face", suit=1:12, rank=1:12+1,

cfg=cfg, envir=cfgs,
x=rep(6:1, 2), y=rep(2*2:1, each=6),
default.units="in", op_scale=0.5)

}
piecepack "playing card expansion"
if (requireNamespace("grid", quietly = TRUE) && piecepackr:::device_supports_unicode()) {

grid::grid.newpage()
df_tiles <- data.frame(piece_side="tile_back",

x=0.5+c(3,1,3,1), y=0.5+c(3,3,1,1),
suit=NA, angle=NA, z=1/8,
stringsAsFactors=FALSE)

df_coins <- data.frame(piece_side="coin_back",
x=rep(4:1, 4), y=rep(4:1, each=4),
suit=c(1,4,1,4,4,1,4,1,2,3,2,3,3,2,3,2),
angle=rep(c(180,0), each=8), z=1/4+1/16,
stringsAsFactors=FALSE)

df <- rbind(df_tiles, df_coins)
pmap_piece(df, cfg = cfgs$playing_cards_expansion, op_scale=0.5,

default.units="in")
}

geom_piece 15

geom_piece Draw board game pieces with ggplot2

Description

geom_piece() creates a ggplot2 geom. aes_piece() takes a data frame and generates an appro-
priate ggplot2::aes() mapping.

Usage

geom_piece(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
envir = getOption("piecepackr.envir", piecepackr::game_systems()),
op_scale = getOption("piecepackr.op_scale", 0),
op_angle = getOption("piecepackr.op_angle", 45),
inherit.aes = TRUE

)

aes_piece(df)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

16 geom_piece

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Aesthetics, used to set an aesthetic to a fixed value.

envir Environment (or named list) containing configuration list(s).

op_scale How much to scale the depth of the piece in the oblique projection (viewed from
the top of the board). 0 (the default) leads to an “orthographic” projection, 0.5
is the most common scale used in the “cabinet” projection, and 1.0 is the scale
used in the “cavalier” projection.

op_angle What is the angle of the oblique projection? Has no effect if op_scale is 0.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

df A data frame of game piece information with (at least) the named columns
“piece_side”, “x”, and “y”.

Details

geom_piece() requires a fixed scale coordinate system with an aspect ratio of 1 as provided by
ggplot2::coord_fixed(). geom_piece() also requires that cfg is a character vector (and not a
pp_cfg() object). In particular if using op_transform() one should set its argument cfg_class =
"character" if intending for use with geom_piece().

Aesthetics

geom_piece() understands the following aesthetics (required aesthetics are in bold). See pieceGrob()
for more details.

• x

• y

• z

• piece_side

• rank

• suit

• cfg

geom_piece 17

• width

• height

• depth

• angle

• scale

• type

See Also

geom_piece() is a wrapper around pieceGrob(). scale_x_piece() and scale_y_piece() are
wrappers around ggplot2::scale_x_continuous() and ggplot2::scale_y_continuous() with
better defaults for board game diagrams.

Examples

if (require("ggplot2", quietly = TRUE) && require("tibble", quietly = TRUE)) {
envir <- game_systems("sans")
df_board <- tibble(piece_side = "board_face", suit = 3, rank = 8,

x = 4.5, y = 4.5)
df_w <- tibble(piece_side = "bit_face", suit = 6, rank = 1,

x = rep(1:8, 2), y = rep(1:2, each=8))
df_b <- tibble(piece_side = "bit_face", suit = 1, rank = 1,

x = rep(1:8, 2), y = rep(7:8, each=8))
df <- rbind(df_board, df_w, df_b)
2D example
`cfg` must be a character vector for `geom_piece()`
ggplot(df, aes_piece(df)) +

geom_piece(cfg = "checkers1", envir = envir) +
coord_fixed() +
scale_x_piece() +
scale_y_piece() +
theme_minimal(28) +
theme(panel.grid = element_blank())

}
if (require("ggplot2", quietly = TRUE) && require("tibble", quietly = TRUE)) {

3D "oblique" projection example
`cfg_class` must be "character" when using with `geom_piece()`
df3d <- op_transform(df, cfg = "checkers1", envir = envir,

op_angle = 45, cfg_class = "character")
ggplot(df3d, aes_piece(df3d)) +

geom_piece(cfg = "checkers1", envir = envir,
op_angle = 45, op_scale = 0.5) +

coord_fixed() +
theme_void()

}

18 grid.cropmark

grid.cropmark Crop Mark Grob

Description

grid.cropmark() draws “crop marks” to the active graphics device. cropmarkGrob() is its grid
grob counterpart. Intended for use in adding crop marks around game pieces in print-and-play
layouts.

Usage

cropmarkGrob(
...,
piece_side = "tile_back",
suit = NA,
rank = NA,
cfg = getOption("piecepackr.cfg", pp_cfg()),
x = unit(0.5, "npc"),
y = unit(0.5, "npc"),
angle = 0,
width = NA,
height = NA,
scale = 1,
default.units = "npc",
envir = getOption("piecepackr.envir"),
name = NULL,
gp = NULL,
vp = NULL,
bleed = unit(0.125, "in"),
cm_select = "12345678",
cm_width = unit(0.25, "mm"),
cm_length = unit(0.125, "in")

)

grid.cropmark(..., draw = TRUE)

Arguments

... cropmarkGrob() ignores; grid.cropmark() passes to cropmarkGrob().

piece_side A string with piece and side separated by a underscore e.g. "coin_face"

suit Number of suit (starting from 1).

rank Number of rank (starting from 1)

cfg Piecepack configuration list or pp_cfg object, a list of pp_cfg objects, or a
character vector referring to names in envir or a character vector referring to
object names that can be retrieved by base::dynGet().

grid.cropmark 19

x Where to place piece on x axis of viewport

y Where to place piece on y axis of viewport

angle Angle (on xy plane) to draw piece at

width Width of piece

height Height of piece

scale Multiplicative scaling factor to apply to width, height, and depth.

default.units A string indicating the default units to use if ’x’, ’y’, ’width’, and/or ’height’ are
only given as numeric vectors.

envir Environment (or named list) containing configuration list(s).

name A character identifier (for grid)

gp An object of class “gpar”.

vp A grid viewport object (or NULL).

bleed Bleed zone size to assume:

• If bleed is a grid::unit() simply use it
• If bleed is numeric then convert via grid::unit(bleed, default.units)

• If bleed is TRUE assume 1/8 inch bleed zone size
• If bleed is FALSE assume 0 inch bleed zone size

cm_select A string of integers from "1" to "8" indicating which crop marks to draw. "1"
represents the top right crop mark then we proceeding clockwise to "8" which
represents the top left crop mark. Default "12345678" draws all eight crop
marks.

cm_width Width of crop mark.

cm_length Length of crop mark.

draw A logical value indicating whether graphics output should be produced.

Value

A grid grob.

Examples

if (requireNamespace("grid", quietly = TRUE) && piecepackr:::device_supports_unicode()) {
cfg <- pp_cfg(list(mat_color = "pink", mat_width=0.05, border_color=NA))
grid::grid.newpage()
df <- data.frame(piece_side = "tile_face", suit = 2, rank = 2,

x = 2, y = 2, angle = 0,
stringsAsFactors = FALSE)

pmap_piece(df, grid.cropmark, cfg = cfg, default.units = "in")
pmap_piece(df, grid.piece, cfg = cfg, default.units = "in", bleed=TRUE)

}
if (requireNamespace("grid", quietly = TRUE) && piecepackr:::device_supports_unicode()) {

grid::grid.newpage()
df <- data.frame(piece_side = "coin_back", suit = 2, rank = 2,

x = 2, y = 2, angle = 0,
stringsAsFactors = FALSE)

20 grid.piece

pmap_piece(df, grid.cropmark, cfg = cfg, default.units = "in", bleed=TRUE)
pmap_piece(df, grid.piece, cfg = cfg, default.units = "in", bleed=TRUE)

}

grid.piece Draw board game pieces with grid

Description

grid.piece() draws board game pieces onto the graphics device. pieceGrob() is its grid “grob”
counterpart.

Usage

pieceGrob(
piece_side = "tile_back",
suit = NA,
rank = NA,
cfg = getOption("piecepackr.cfg", pp_cfg()),
x = unit(0.5, "npc"),
y = unit(0.5, "npc"),
z = NA,
angle = 0,
...,
width = NA,
height = NA,
depth = NA,
op_scale = getOption("piecepackr.op_scale", 0),
op_angle = getOption("piecepackr.op_angle", 45),
default.units = getOption("piecepackr.default.units", "npc"),
envir = getOption("piecepackr.envir"),
name = NULL,
gp = NULL,
vp = NULL,
scale = 1,
alpha = 1,
type = "normal",
bleed = FALSE

)

grid.piece(
piece_side = "tile_back",
suit = NA,
rank = NA,
cfg = getOption("piecepackr.cfg", pp_cfg()),
x = unit(0.5, "npc"),
y = unit(0.5, "npc"),

grid.piece 21

z = NA,
angle = 0,
...,
width = NA,
height = NA,
depth = NA,
op_scale = getOption("piecepackr.op_scale", 0),
op_angle = getOption("piecepackr.op_angle", 45),
default.units = getOption("piecepackr.default.units", "npc"),
envir = getOption("piecepackr.envir"),
name = NULL,
gp = NULL,
draw = TRUE,
vp = NULL,
scale = 1,
alpha = 1,
type = "normal",
bleed = FALSE

)

Arguments

piece_side A string with piece and side separated by a underscore e.g. "coin_face"

suit Number of suit (starting from 1).

rank Number of rank (starting from 1)

cfg Piecepack configuration list or pp_cfg object, a list of pp_cfg objects, or a
character vector referring to names in envir or a character vector referring to
object names that can be retrieved by base::dynGet().

x Where to place piece on x axis of viewport

y Where to place piece on y axis of viewport

z z-coordinate of the piece. Has no effect if op_scale is 0.

angle Angle (on xy plane) to draw piece at

... Ignored.

width Width of piece

height Height of piece

depth Depth (thickness) of piece. Has no effect if op_scale is 0.

op_scale How much to scale the depth of the piece in the oblique projection (viewed from
the top of the board). 0 (the default) leads to an “orthographic” projection, 0.5
is the most common scale used in the “cabinet” projection, and 1.0 is the scale
used in the “cavalier” projection.

op_angle What is the angle of the oblique projection? Has no effect if op_scale is 0.

default.units A string indicating the default units to use if ’x’, ’y’, ’width’, and/or ’height’ are
only given as numeric vectors.

envir Environment (or named list) containing configuration list(s).

22 grid.piece

name A character identifier (for grid)

gp An object of class “gpar”.

vp A grid viewport object (or NULL).

scale Multiplicative scaling factor to apply to width, height, and depth.

alpha Alpha channel for transparency.

type Type of grid grob to use. Either "normal" (default), "picture", "raster",
or "transformation". "picture" exports to (temporary) svg and re-imports
as a grImport2::pictureGrob. "raster" exports to (temporary) png and re-
imports as a grid::rasterGrob. "transformation" uses the affine transfor-
mation feature only supported in R 4.2+ within select graphic devices. The latter
three can be useful if drawing pieces really big or small and don’t want to mess
with re-configuring fontsizes and linewidths.

bleed If FALSE do not add a “bleed” zone around the piece, otherwise add a “bleed”
zone around the piece:

• If bleed is TRUE we will add 1/8 inch bleeds
• If bleed is a grid::unit() we will use it as bleed size
• If bleed is numeric we will convert to grid::unit() via grid::unit(bleed,
default.units)

A non-FALSE bleed is incompatible with op_scale > 0 (drawing in an “oblique
projection”).

draw A logical value indicating whether graphics output should be produced.

Value

A grid grob object. If draw is TRUE then as a side effect grid.piece() will also draw it to the
graphics device.

See Also

pmap_piece() which applies pieceGrob() over rows of a data frame.

Examples

if (requireNamespace("grid", quietly = TRUE) && piecepackr:::device_supports_unicode()) {
opt <- options(piecepackr.at.inform = FALSE)
on.exit(options(opt))

draw_pp_diagram <- function(cfg=pp_cfg(), op_scale=0) {
g.p <- function(...) {

grid.piece(..., op_scale=op_scale, cfg=cfg, default.units="in")
}
g.p("tile_back", x=0.5+c(3,1,3,1), y=0.5+c(3,3,1,1))
g.p("tile_back", x=0.5+3, y=0.5+1, z=1/4+1/8)
g.p("tile_back", x=0.5+3, y=0.5+1, z=2/4+1/8)
g.p("die_face", suit=3, rank=5, x=1, y=1, z=1/4+1/4)
g.p("pawn_face", x=1, y=4, z=1/4+1/2, angle=90)
g.p("coin_back", x=3, y=4, z=1/4+1/16, angle=180)

op_transform 23

g.p("coin_back", suit=4, x=3, y=4, z=1/4+1/8+1/16, angle=180)
g.p("coin_back", suit=2, x=3, y=1, z=3/4+1/8, angle=90)

}

default piecepack, orthogonal projection
draw_pp_diagram(cfg=pp_cfg())

}
if (requireNamespace("grid", quietly = TRUE) && piecepackr:::device_supports_unicode()) {

custom configuration, orthogonal projection
grid::grid.newpage()
dark_colorscheme <- list(suit_color="darkred,black,darkgreen,darkblue,black",

invert_colors.suited=TRUE, border_color="black", border_lex=2)
traditional_ranks <- list(use_suit_as_ace=TRUE, rank_text=",a,2,3,4,5")
cfg <- c(dark_colorscheme, traditional_ranks)
draw_pp_diagram(cfg=pp_cfg(cfg))

}
if (requireNamespace("grid", quietly = TRUE) && piecepackr:::device_supports_unicode()) {

custom configuration, oblique projection
grid::grid.newpage()
cfg3d <- list(width.pawn=0.75, height.pawn=0.75, depth.pawn=1,

dm_text.pawn="", shape.pawn="convex6", invert_colors.pawn=TRUE,
edge_color.coin="tan", edge_color.tile="tan")

cfg <- pp_cfg(c(cfg, cfg3d))
draw_pp_diagram(cfg=pp_cfg(cfg), op_scale=0.5)

}

op_transform Oblique projection helper function

Description

Guesses z coordinates and sorting order to more easily make 3D graphics with pmap_piece.

Usage

op_transform(
df,
...,
cfg = getOption("piecepackr.cfg", pp_cfg()),
envir = getOption("piecepackr.envir"),
op_angle = getOption("piecepackr.op_angle", 45),
pt_thickness = 0.01,
as_top = character(0),
cfg_class = "list"

)

Arguments

df A data frame with coordinates and dimensions in inches

24 piece

... Ignored

cfg Piecepack configuration list or pp_cfg object, a list of pp_cfg objects, or a
character vector of pp_cfg objects

envir Environment (or named list) containing configuration list(s).

op_angle Intended oblique projection angle (used for re-sorting)

pt_thickness Thickness of pyramid tip i.e. value to add to the z-value of a pyramid top if it is a
(weakly) smaller ranked pyramid (top) placed on top of a larger ranked pyramid
(top).

as_top Character vector of components whose “side” should be converted to “top” e.g.
c("pawn_face").

cfg_class Either "list" (default) or "character". Desired class of the cfg column in
the returned tibble. "list" is more efficient for use with pmap_piece() but
geom_piece() needs "character".

Details

The heuristics used to generate guesses for z coordinates and sorting order aren’t guaranteed to
work in every case. In some cases you may get better sorting results by changing the op_angle or
the dimensions of pieces.

Value

A tibble with extra columns added and re-sorted rows

See Also

https://trevorldavis.com/piecepackr/3d-projections.html for more details and examples
of oblique projections in piecepackr.

Examples

df <- tibble::tibble(piece_side="tile_back",
x=c(2,2,2,4,6,6,4,2,5),
y=c(4,4,4,4,4,2,2,2,3))

cfg <- game_systems()$piecepack
pmap_piece(df, op_angle=135, trans=op_transform,

op_scale=0.5, default.units="in", cfg=cfg)

piece Create rayrender board game piece objects

Description

piece creates 3d board game piece objects for use with the rayrender package.

https://trevorldavis.com/piecepackr/3d-projections.html

piece 25

Usage

piece(
piece_side = "tile_back",
suit = NA,
rank = NA,
cfg = getOption("piecepackr.cfg", pp_cfg()),
x = 0,
y = 0,
z = NA,
angle = 0,
axis_x = 0,
axis_y = 0,
width = NA,
height = NA,
depth = NA,
envir = getOption("piecepackr.envir"),
...,
scale = 1,
res = 72

)

Arguments

piece_side A string with piece and side separated by a underscore e.g. "coin_face"

suit Number of suit (starting from 1).

rank Number of rank (starting from 1)

cfg Piecepack configuration list or pp_cfg object, a list of pp_cfg objects, or a
character vector referring to names in envir or a character vector referring to
object names that can be retrieved by base::dynGet().

x Where to place piece on x axis of viewport

y Where to place piece on y axis of viewport

z z-coordinate of the piece. Has no effect if op_scale is 0.

angle Angle (on xy plane) to draw piece at

axis_x First coordinate of the axis unit vector.

axis_y Second coordinate of the axis unit vector.

width Width of piece

height Height of piece

depth Depth (thickness) of piece. Has no effect if op_scale is 0.

envir Environment (or named list) containing configuration list(s).

... Ignored.

scale Multiplicative scaling factor to apply to width, height, and depth.

res Resolution of the faces.

26 piece3d

Value

A rayrender object.

See Also

See https://www.rayrender.net for more information about the rayrender package. See geometry_utils
for a discussion of the 3D rotation parameterization.

Examples

May take more than 5 seconds on CRAN servers
opt <- options(cores = getOption("Ncpus"))
cfg <- game_systems("sans3d")$piecepack
if (requireNamespace("rayrender", quietly = TRUE) && all(capabilities(c("cairo", "png")))) {

rayrender::render_scene(piece("tile_face", suit = 3, rank = 3, cfg = cfg))
}
if (requireNamespace("rayrender", quietly = TRUE) && all(capabilities(c("cairo", "png")))) {

rayrender::render_scene(piece("coin_back", suit = 4, rank = 2, cfg = cfg))
}
if (requireNamespace("rayrender", quietly = TRUE) && all(capabilities(c("cairo", "png")))) {

rayrender::render_scene(piece("pawn_face", suit = 2, cfg = cfg))
}
options(opt)

piece3d Render board game pieces with rgl

Description

piece3d draws board games pieces using the rgl package.

Usage

piece3d(
piece_side = "tile_back",
suit = NA,
rank = NA,
cfg = getOption("piecepackr.cfg", pp_cfg()),
x = 0,
y = 0,
z = NA,
angle = 0,
axis_x = 0,
axis_y = 0,
width = NA,
height = NA,
depth = NA,

https://www.rayrender.net

piece3d 27

envir = getOption("piecepackr.envir"),
...,
scale = 1,
res = 72,
alpha = 1,
lit = FALSE,
shininess = 50,
textype = NA

)

Arguments

piece_side A string with piece and side separated by a underscore e.g. "coin_face"

suit Number of suit (starting from 1).

rank Number of rank (starting from 1)

cfg Piecepack configuration list or pp_cfg object, a list of pp_cfg objects, or a
character vector referring to names in envir or a character vector referring to
object names that can be retrieved by base::dynGet().

x Where to place piece on x axis of viewport

y Where to place piece on y axis of viewport

z z-coordinate of the piece. Has no effect if op_scale is 0.

angle Angle (on xy plane) to draw piece at

axis_x First coordinate of the axis unit vector.

axis_y Second coordinate of the axis unit vector.

width Width of piece

height Height of piece

depth Depth (thickness) of piece. Has no effect if op_scale is 0.

envir Environment (or named list) containing configuration list(s).

... Ignored.

scale Multiplicative scaling factor to apply to width, height, and depth.

res Resolution of the faces.

alpha Alpha channel for transparency.

lit logical, specifying if rgl lighting calculation should take place.

shininess Properties for rgl lighting calculation.

textype Use "rgba" when sure texture will have alpha transparency. Use "rgb" when
sure texture will not have alpha transparency (in particular rgl’s WebGL export
will likely work better). If NA we will read the texture and figure out a reasonable
value.

Value

A numeric vector of rgl object IDs.

28 piecepackr-defunct

See Also

See rgl-package for more information about the rgl package. See rgl::material3d() for more
info about setting rgl material properties. See geometry_utils for a discussion of the 3D rotation
parameterization.

Examples

if (requireNamespace("rgl", quietly = TRUE) && all(capabilities(c("cairo", "png")))) {
rgl::open3d()
cfg <- game_systems("sans3d")$piecepack
piece3d("tile_back", suit = 3, rank = 3, cfg = cfg, x = 0, y = 0, z = 0)
piece3d("coin_back", suit = 4, rank = 2, cfg = cfg, x = 0.5, y = 0.5, z = 0.25)
piece3d("pawn_top", suit = 1, cfg = cfg, x = -0.5, y = 0.5, z = 0.6)
piece3d("die_face", suit = 3, cfg = cfg, x = -0.5, y = -0.5, z = 0.375)
piece3d("pyramid_top", suit = 2, rank = 3, cfg = cfg, x = 1.5, y = 0.0, z = 0.31875)
invisible(NULL)

}

piecepackr-defunct Defunct functions

Description

These functions are Defunct and have been removed from piecepackr.

Usage

halmaGrob(...)

kiteGrob(...)

pyramidGrob(...)

convexGrobFn(...)

concaveGrobFn(...)

gridlinesGrob(...)

matGrob(...)

checkersGrob(...)

hexlinesGrob(...)

get_shape_grob_fn(...)

piece_mesh 29

Arguments

... Ignored

Details

1. For get_shape_grob_fn use pp_shape()$shape instead.

2. For gridlinesGrob() use pp_shape()$gridlines() instead.

3. For matGrob() use pp_shape()$mat() instead.

4. For checkersGrob()() use pp_shape()$checkers() instead.

5. For hexlinesGrob() use pp_shape()$hexlines() instead.

6. For halmaGrob() use pp_shape("halma")$shape() instead.

7. For kiteGrob() use pp_shape("kite")$shape() instead.

8. For pyramidGrob() use pp_shape("pyramid")$shape() instead.

9. For convexGrobFn(n, t) use pp_shape(paste0("convex", n), t)$shape instead.

10. For concaveGrobFn(n, t, r) use pp_shape(paste0("concave", n), t, r)$shape instead.

piece_mesh Create rayvertex board game piece objects

Description

piece_mesh() creates 3d board game piece objects for use with the rayvertex package.

Usage

piece_mesh(
piece_side = "tile_back",
suit = NA,
rank = NA,
cfg = pp_cfg(),
x = 0,
y = 0,
z = NA,
angle = 0,
axis_x = 0,
axis_y = 0,
width = NA,
height = NA,
depth = NA,
envir = NULL,
...,
scale = 1,
res = 72

)

30 piece_mesh

Arguments

piece_side A string with piece and side separated by a underscore e.g. "coin_face"

suit Number of suit (starting from 1).

rank Number of rank (starting from 1)

cfg Piecepack configuration list or pp_cfg object, a list of pp_cfg objects, or a
character vector referring to names in envir or a character vector referring to
object names that can be retrieved by base::dynGet().

x Where to place piece on x axis of viewport

y Where to place piece on y axis of viewport

z z-coordinate of the piece. Has no effect if op_scale is 0.

angle Angle (on xy plane) to draw piece at

axis_x First coordinate of the axis unit vector.

axis_y Second coordinate of the axis unit vector.

width Width of piece

height Height of piece

depth Depth (thickness) of piece. Has no effect if op_scale is 0.

envir Environment (or named list) containing configuration list(s).

... Ignored.

scale Multiplicative scaling factor to apply to width, height, and depth.

res Resolution of the faces.

Value

A rayvertex object.

See Also

See https://www.rayvertex.com for more information about the rayvertex package. See geometry_utils
for a discussion of the 3D rotation parameterization.

Examples

May take more than 5 seconds on CRAN servers
if (requireNamespace("rayvertex", quietly = TRUE) && all(capabilities(c("cairo", "png")))) {

cfg <- game_systems("sans3d")$piecepack
rs <- function(shape) {

opt <- options(cores = getOption("Ncpus"))
light <- rayvertex::directional_light(c(0, 0, 1))
rayvertex::rasterize_scene(shape, light_info = light)
options(opt)

}
rs(piece_mesh("tile_face", suit = 3, rank = 3, cfg = cfg))

}
if (requireNamespace("rayvertex", quietly = TRUE) && all(capabilities(c("cairo", "png")))) {

rs(piece_mesh("coin_back", suit = 4, rank = 2, cfg = cfg))

https://www.rayvertex.com

pmap_piece 31

}
if (requireNamespace("rayvertex", quietly = TRUE) && all(capabilities(c("cairo", "png")))) {

rs(piece_mesh("pawn_face", suit = 1, cfg = cfg))
}

pmap_piece Create graphics using data frame input

Description

pmap_piece() operates on the rows of a data frame applying .f to each row (usually grid.piece).

Usage

pmap_piece(
.l,
.f = pieceGrob,
...,
cfg = getOption("piecepackr.cfg"),
envir = getOption("piecepackr.envir"),
trans = getOption("piecepackr.trans"),
draw = TRUE,
name = NULL,
gp = NULL,
vp = NULL

)

Arguments

.l A list of vectors, such as a data frame. The length of .l determines the number
of arguments that .f will be called with. List names will be used if present.

.f Function to be applied to .l after adjustments to cfg and envir and the applica-
tion of trans. Usually grid.piece(), pieceGrob(), piece3d(), or piece().

... Extra arguments to pass to .f.

cfg Piecepack configuration list or pp_cfg object, a list of pp_cfg objects, or a
character vector referring to names in envir or a character vector referring to
object names that can be retrieved by base::dynGet().

envir Environment (or named list) containing configuration list(s).

trans Function to modify .l before drawing. Default (NULL) is to not modify .l.
op_transform can help with using an oblique projection (i.e. op_scale over
0).

draw A logical value indicating whether graphics output should be produced.

name A character identifier (for grid)

gp An object of class “gpar”.

vp A grid viewport object (or NULL).

32 pp_cfg

Details

pmap_piece() differs from purrr::pmap() in a few ways:

1. If cfg and/or envir are missing attempts to set reasonable defaults.
2. If not NULL will first apply function trans to .l.
3. If the output of .f is a grid grob object then pmap_piece will return a gTree object with

specified name, gp, and vp values and if draw is true draw it.
4. If .l lacks a name column or if name column is non-unique attempts to generate a reasonable

new default name column and use that to name the return gTree children or list values.

See Also

render_piece() is a higher-level function that wraps this function.

Examples

if (requireNamespace("grid", quietly = TRUE) && piecepackr:::device_supports_unicode()) {
dark_colorscheme <- list(suit_color="darkred,black,darkgreen,darkblue,black",

invert_colors.suited=TRUE, border_color="black", border_lex=2)
traditional_ranks <- list(use_suit_as_ace=TRUE, rank_text=",a,2,3,4,5")
cfg3d <- list(width.pawn=0.75, height.pawn=0.75, depth.pawn=1,

dm_text.pawn="", shape.pawn="convex6", invert_colors.pawn=TRUE,
edge_color.coin="tan", edge_color.tile="tan")

cfg <- pp_cfg(c(dark_colorscheme, traditional_ranks, cfg3d))
grid::grid.newpage()
df_tiles <- data.frame(piece_side="tile_back", x=0.5+c(3,1,3,1), y=0.5+c(3,3,1,1),

suit=NA, angle=NA, z=NA, stringsAsFactors=FALSE)
df_coins <- data.frame(piece_side="coin_back", x=rep(4:1, 4), y=rep(4:1, each=4),

suit=1:16%%2+rep(c(1,3), each=8),
angle=rep(c(180,0), each=8), z=1/4+1/16, stringsAsFactors=FALSE)

df <- rbind(df_tiles, df_coins)
pmap_piece(df, cfg=cfg, op_scale=0.5, default.units="in")

}

pp_cfg Configuration list R6 object

Description

pp_cfg() and as_pp_cfg() create piecepack configuration list R6 objects. is_pp_cfg() returns
TRUE if object is a piecepack configuration list R6 object. as.list() will convert it into a list.

Usage

pp_cfg(cfg = list())

is_pp_cfg(cfg)

as_pp_cfg(cfg = list())

pp_cfg 33

Arguments

cfg List of configuration options

Details

pp_cfg R6 class objects serve the following purposes:

• Customize the appearance of pieces drawn by grid.piece().

• Speed up the drawing of graphics through use of caching.

• Allow the setting and querying of information about the board game components that maybe
of use to developers:

– Number of suits
– Number of ranks
– Suit colors
– Which types of components are included and/or properly supported
– What would be a good color to use when adding annotations on top of these components.
– Title, Description, Copyright, License, and Credit metadata

pp_cfg R6 Class Method Arguments

piece_side A string with piece and side separated by a underscore e.g. "coin_face".

suit Number of suit (starting from 1).

rank Number of rank (starting from 1).

type Which type of grob to return, either "normal", "picture", "raster", or "transformation".

scale "scale" factor

alpha "alpha" value

pp_cfg R6 Class Methods

get_grob() Returns a grid “grob” for drawing the piece.

get_piece_opt() Returns a list with info useful for drawing the piece.

get_suit_color() Returns the suit colors.

get_width(), get_height(), get_depth() Dimensions (of the bounding cube) of the piece in
inches

pp_cfg R6 Class Fields and Active Bindings

annotation_color Suggestion of a good color to annotate with

cache Cache object which stores intermediate graphical calculations. Default is a memory-cache
that does not prune. This can be replaced by another cache that implements the cache API
used by the cachem package

cache_grob Whether we should cache (2D) grobs

cache_grob_with_bleed_fn Whether we should cache the grob with bleed functions

cache_piece_opt Whether we should cache piece opt information

34 pp_cfg

cache_op_fn Whether we should cache the oblique projection functions

cache_obj_fn Whether we should cache any 3D rendering functions

copyright Design copyright information

credit Design credits

description Design description

fontfamily Main font family

has_bits Whether we should assume this supports "bit" pieces

has_boards Whether we should assume this supports "board" pieces

has_cards Whether we should assume this supports "card" pieces

has_coins Whether we should assume this supports "coin" pieces

has_dice Whether we should assume this supports "die" pieces

has_matchsticks Whether we should assume this supports "matchstick" pieces

has_pawns Whether we should assume this supports "pawn" pieces

has_piecepack Binding which simultaneously checks/sets has_coins, has_tiles, has_pawns,
has_dice

has_pyramids Whether we should assume this supports "pyramid" pieces

has_saucers Whether we should assume this supports "saucer" pieces

has_tiles Whether we should assume this supports "tile" pieces

spdx_id SPDX Identifier for graphical design license. See https://spdx.org/licenses/ for
full list.

title Design title

Defunct pp_cfg R6 Class attributes which have been removed

cache_shadow Use cache_op_fn instead

i_unsuit Instead add 1L to n_suits

get_pictureGrob() Use get_grob(..., type = "picture") instead

get_shadow_fn get_op_grob() returns complete oblique projection grob

See Also

game_systems() for functions that return configuration list objects for several game systems.
https://trevorldavis.com/piecepackr/configuration-lists.html for more details about
piecepackr configuration lists.

Examples

cfg <- pp_cfg(list(invert_colors=TRUE))
as.list(cfg)
is_pp_cfg(cfg)
as_pp_cfg(list(suit_color="darkred,black,darkgreen,darkblue,grey"))
cfg$get_suit_color(suit=3)
cfg$annotation_color

https://spdx.org/licenses/
https://trevorldavis.com/piecepackr/configuration-lists.html

pp_shape 35

cfg$has_matchsticks
cfg$has_matchsticks <- TRUE
cfg$has_matchsticks
cfg$get_width("tile_back")
cfg$get_height("die_face")
cfg$get_depth("coin_face")
May take more than 5 seconds on CRAN servers
`pp_cfg()` objects use a cache to speed up repeated drawing
pdf(tempfile(fileext = ".pdf"))
cfg <- list()
system.time(replicate(100, grid.piece("tile_back", 4, 4, cfg)))
cfg <- pp_cfg(list())
system.time(replicate(100, grid.piece("tile_back", 4, 4, cfg)))
invisible(dev.off())

pp_shape Shape object for generating various grobs

Description

pp_shape() creates an R6 object with methods for creating various shape based grobs.

Usage

pp_shape(label = "rect", theta = 90, radius = 0.2, back = FALSE)

Arguments

label Label of the shape. One of

“circle” Circle.
“convexN” An N-sided convex polygon. theta controls which direction the

first vertex is drawn.
“concaveN” A “star” (concave) polygon with N “points”. theta controls which

direction the first point is drawn. radius controls the distance of the “inner”
vertices from the center.

“halma” A 2D outline of a “Halma pawn”.
“kite” “Kite” quadrilateral shape.
“meeple” A 2D outline of a “meeple”.
“oval” Oval.
“pyramid” An “Isosceles” triangle whose base is the bottom of the viewport.

Typically used to help draw the face of the “pyramid” piece.
“rect” Rectangle.
“roundrect” “Rounded” rectangle. radius controls curvature of corners.

theta convex and concave polygon shapes use this to determine where the first point
is drawn.

36 pp_shape

radius concave polygon and roundrect use this to control appearance of the shape.
back Whether the shape should be reflected across a vertical line in the middle of the

viewport.

Details

pp_shape objects serve the following purposes:

1. Make it easier for developers to customize game piece appearances either through a "grob_fn"
or "op_grob_fn" styles in pp_cfg() or manipulate a piece post drawing via functions like
grid::grid.edit().

2. Used internally to generate piecepackr’s built-in game piece grobs.

pp_shape R6 Class Method Arguments

mat_width Numeric vector of mat widths.
clip “clip grob” to perform polyclip operation with. See gridGeometry::grid.polyclip() for

more info.
op Polyclip operation to perform. See gridGeometry::grid.polyclip() for more info.
pattern Pattern to fill in shape with. See gridpattern::patternGrob() for more info.
... Passed to gridpattern::patternGrob().
name Grid grob name value.
gp Grid gpar list. See grid::gpar() for more info.
vp Grid viewport or NULL.

pp_shape R6 Class Methods

checkers(name = NULL, gp = gpar(), vp = NULL) Returns a grob of checkers for that shape.
gridlines(name = NULL, gp = gpar(), vp = NULL) Returns a grob of gridlines for that shape.
hexlines(name = NULL, gp = gpar(), vp = NULL) Returns a grob of hexlines for that shape.
mat(mat_width = 0, name = NULL, gp = gpar(), vp = NULL) Returns a grob for a matting “mat”

for that shape.
pattern(pattern = "stripe", ..., name = NULL, gp = gpar(), vp = NULL) Fills in the shape’s

npc_coords with a pattern. See gridpattern::patternGrob() for more information.
polyclip(clip, op = "intersection", name = NULL, gp = gpar(), vp = NULL) Returns a grob

that is an “intersection”, “minus”, “union”, or “xor” of another grob. Note unlike gridGeometry::polyclipGrob
it can directly work with a pieceGrob "clip grob" argument.

shape(name = NULL, gp = gpar(), vp = NULL) Returns a grob of the shape.

pp_shape R6 Class Active Bindings

label The shape’s label.
theta The shape’s theta.
radius The shape’s radius.
back A boolean of whether this is the shape’s “back” side.
npc_coords A named list of “npc” coordinates along the perimeter of the shape.

pp_shape 37

Examples

if (require("grid", quietly = TRUE)) {
gp <- gpar(col="black", fill="yellow")
rect <- pp_shape(label="rect")
convex6 <- pp_shape(label="convex6")
circle <- pp_shape(label="circle")

pushViewport(viewport(x=0.25, y=0.75, width=1/2, height=1/2))
grid.draw(rect$shape(gp=gp))
grid.draw(rect$gridlines(gp=gpar(col="blue", lex=4)))
grid.draw(rect$hexlines(gp=gpar(col="green")))
popViewport()

pushViewport(viewport(x=0.75, y=0.75, width=1/2, height=1/2))
grid.draw(convex6$shape(gp=gp))
grid.draw(convex6$checkers(gp=gpar(fill="blue")))
popViewport()

pushViewport(viewport(x=0.25, y=0.25, width=1/2, height=1/2))
grid.draw(circle$shape(gp=gp))
grid.draw(circle$mat(mat_width=0.2, gp=gpar(fill="blue")))
popViewport()

pushViewport(viewport(x=0.75, y=0.25, width=1/2, height=1/2))
grid.draw(rect$shape(gp=gp))
grid.draw(rect$mat(mat_width=c(0.2, 0.1, 0.3, 0.4), gp=gpar(fill="blue")))
popViewport()

}
if (require("grid", quietly = TRUE)) {

grid.newpage()
gp <- gpar(col="black", fill="yellow")

vp <- viewport(x=1/4, y=1/4, width=1/2, height=1/2)
grid.draw(pp_shape("halma")$shape(gp=gp, vp=vp))
vp <- viewport(x=3/4, y=1/4, width=1/2, height=1/2)
grid.draw(pp_shape("pyramid")$shape(gp=gp, vp=vp))
vp <- viewport(x=3/4, y=3/4, width=1/2, height=1/2)
grid.draw(pp_shape("kite")$shape(gp=gp, vp=vp))
vp <- viewport(x=1/4, y=3/4, width=1/2, height=1/2)
grid.draw(pp_shape("meeple")$shape(gp=gp, vp=vp))

}
if (require("grid", quietly = TRUE)) {

grid.newpage()
vp <- viewport(x=1/4, y=1/4, width=1/2, height=1/2)
grid.draw(pp_shape("convex3", 0)$shape(gp=gp, vp=vp))
vp <- viewport(x=3/4, y=1/4, width=1/2, height=1/2)
grid.draw(pp_shape("convex4", 90)$shape(gp=gp, vp=vp))
vp <- viewport(x=3/4, y=3/4, width=1/2, height=1/2)
grid.draw(pp_shape("convex5", 180)$shape(gp=gp, vp=vp))
vp <- viewport(x=1/4, y=3/4, width=1/2, height=1/2)
grid.draw(pp_shape("convex6", 270)$shape(gp=gp, vp=vp))

}

38 pp_utils

if (require("grid", quietly = TRUE)) {
grid.newpage()
vp <- viewport(x=1/4, y=1/4, width=1/2, height=1/2)
grid.draw(pp_shape("concave3", 0, 0.1)$shape(gp=gp, vp=vp))
vp <- viewport(x=3/4, y=1/4, width=1/2, height=1/2)
grid.draw(pp_shape("concave4", 90, 0.2)$shape(gp=gp, vp=vp))
vp <- viewport(x=3/4, y=3/4, width=1/2, height=1/2)
grid.draw(pp_shape("concave5", 180, 0.3)$shape(gp=gp, vp=vp))
vp <- viewport(x=1/4, y=3/4, width=1/2, height=1/2)
grid.draw(pp_shape("concave6", 270)$shape(gp=gp, vp=vp))

}
if (require("grid", quietly = TRUE) &&

requireNamespace("gridpattern", quietly = TRUE)) {
grid.newpage()
hex <- pp_shape("convex6")
gp <- gpar(fill = c("blue", "yellow", "red"), col = "black")
grid.draw(hex$pattern("polygon_tiling", gp = gp, spacing = 0.1,

type = "truncated_trihexagonal"))
gp <- gpar(fill = "black", col = NA)
grid.draw(hex$mat(mat_width = 0.025, gp = gp))

}

pp_utils Miscellaneous piecepackr utility functions

Description

cleave converts a delimiter separated string into a vector. inch(x) is equivalent to unit(x, "in").
is_color_invisible tells whether the color is transparent (and hence need not be drawn).

Usage

is_color_invisible(col)

inch(inches)

cleave(s, sep = ",", float = FALSE, color = FALSE)

file2grob(file, distort = TRUE)

Arguments

col Color

inches Number representing number of inches

s String to convert

sep Delimiter (defaults to ",")

float If TRUE cast to numeric

render_piece 39

color if TRUE convert empty strings to "transparent"

file Filename of image

distort Logical value of whether one should preserve the aspect ratio or distort to fit the
area it is drawn in

Examples

cleave("0.5,0.2,0.4,0.5", float=TRUE)
cleave("black,darkred,#050EAA,,", color=TRUE)

is_color_invisible("transparent")
is_color_invisible(NA)
is_color_invisible("blue")
is_color_invisible("#05AE9C")

if (requireNamespace("grid", quietly = TRUE)) {
identical(inch(1), grid::unit(1, "inch"))

}

render_piece Render image of game pieces

Description

render_piece() renders an image of game pieces to a file or graphics device. It is a wrapper
around pmap_piece() that can auto-size files and graphic devices, apply axes offsets, annotate
coordinates, and set up rayrender / rayvertex scenes.

Usage

render_piece(
df,
file = NULL,
...,
.f = piecepackr::grid.piece,
cfg = getOption("piecepackr.cfg", NULL),
envir = getOption("piecepackr.envir", game_systems("sans")),
width = NULL,
height = NULL,
ppi = 72,
bg = "white",
xoffset = NULL,
yoffset = NULL,
new_device = TRUE,
dev = NULL,
dev.args = list(res = ppi, bg = bg, units = "in"),

40 render_piece

annotate = FALSE,
annotation_scale = NULL

)

Arguments

df A data frame of game piece information with (at least) the named columns
“piece_side”, “x”, and “y”.

file Filename to save image unless NULL in which case it either uses the current
graphics device or opens a new device (depending on new_device argument).

... Arguments to pmap_piece()

.f Low level graphics function to use e.g. grid.piece(), piece3d(), piece_mesh(),
or piece().

cfg A piecepackr configuration list

envir Environment (or named list) of piecepackr configuration lists

width Width of image (in inches). Inferred by default.

height Height of image (in inches). Inferred by default.

ppi Resolution of image in pixels per inch.

bg Background color (use "transparent" for transparent)

xoffset Number to add to the x column in df. Inferred by default.

yoffset Number to add to the y column in df. Inferred by default.

new_device If file is NULL should we open up a new graphics device?

dev Graphics device function to use. If NULL infer a reasonable choice.

dev.args Additional arguments to pass to dev (besides filename, width, and height).
Will filter out any names that aren’t in formals(dev).

annotate If TRUE or "algebraic" annotate the plot with “algrebraic” coordinates, if FALSE
or "none" don’t annotate, if "cartesian" annotate the plot with “cartesian” co-
ordinates.

annotation_scale

Multiplicative factor that scales (stretches) any annotation coordinates. By de-
fault uses attr(df, "scale_factor") %||% 1.

Value

An invisible list of the dimensions of the image, as a side effect saves a graphic

See Also

This function is a wrapper around pmap_piece().

save_ellipsoid_obj 41

Examples

df_board <- data.frame(piece_side = "board_face", suit = 3, rank = 5,
x = 3.0, y = 3.0, stringsAsFactors = FALSE)

df_w <- data.frame(piece_side = "bit_face", suit = 6, rank = 1,
x = rep(1:5, 2), y = rep(1:2, each=5),
stringsAsFactors = FALSE)

df_b <- data.frame(piece_side = "bit_face", suit = 1, rank = 1,
x = rep(1:5, 2), y = rep(4:5, each=5),
stringsAsFactors = FALSE)

df <- rbind(df_board, df_w, df_b)
df$cfg <- "checkers1"

if (requireNamespace("grid", quietly = TRUE)) {
render_piece(df, new_device = FALSE)

}
if (requireNamespace("grid", quietly = TRUE)) {

grid::grid.newpage()
render_piece(df, new_device = FALSE,

op_scale = 0.5, trans = op_transform,
annotate = "algrebraic")

}
Not run: # May take more than 5 seconds on CRAN servers
if (require(rayvertex)) {
envir3d <- game_systems("sans3d")
render_piece(df, .f = piece_mesh, envir = envir3d,

op_scale = 0.5, trans = op_transform)
}

End(Not run)

save_ellipsoid_obj Alternative Wavefront OBJ file generators

Description

These are alternative Wavefront OBJ generators intended to be used as a obj_fn attribute in a
pp_cfg() “configuration list”. save_ellipsoid_obj saves an ellipsoid with a color equal to that
piece’s background_color. save_peg_doll_obj saves a “peg doll” style doll with a color equal to
that piece’s edge_color with a “pawn belt” around it’s waste from that suit’s and rank’s belt_face.

Usage

save_ellipsoid_obj(
piece_side = "bit_face",
suit = 1,
rank = 1,
cfg = getOption("piecepackr.cfg", pp_cfg()),
...,
x = 0,

42 save_ellipsoid_obj

y = 0,
z = 0,
angle = 0,
axis_x = 0,
axis_y = 0,
width = NA,
height = NA,
depth = NA,
filename = tempfile(fileext = ".obj"),
subdivide = 3

)

save_peg_doll_obj(
piece_side = "pawn_top",
suit = 1,
rank = 1,
cfg = getOption("piecepackr.cfg", pp_cfg()),
...,
x = 0,
y = 0,
z = 0,
angle = 0,
axis_x = 0,
axis_y = 0,
width = NA,
height = NA,
depth = NA,
filename = tempfile(fileext = ".obj"),
res = 72

)

Arguments

piece_side A string with piece and side separated by a underscore e.g. "coin_face"

suit Number of suit (starting from 1).

rank Number of rank (starting from 1)

cfg Piecepack configuration list or pp_cfg object, a list of pp_cfg objects, or a
character vector referring to names in envir or a character vector referring to
object names that can be retrieved by base::dynGet().

... Ignored.

x Where to place piece on x axis of viewport

y Where to place piece on y axis of viewport

z z-coordinate of the piece. Has no effect if op_scale is 0.

angle Angle (on xy plane) to draw piece at

axis_x First coordinate of the axis unit vector.

axis_y Second coordinate of the axis unit vector.

save_piece_images 43

width Width of piece

height Height of piece

depth Depth (thickness) of piece. Has no effect if op_scale is 0.

filename Name of Wavefront OBJ object.

subdivide Increasing this value makes for a smoother ellipsoid (and larger OBJ file and
slower render). See ellipse3d.

res Resolution of the faces.

See Also

See pp_cfg() for a discussion of “configuration lists”. Wavefront OBJ file generators are used by
save_piece_obj() and (by default) piece3d() (rgl wrapper), piece() (rayrender wrapper),
and piece_mesh() (rayvertex wrapper).

save_piece_images Save piecepack images

Description

Saves images of all individual piecepack pieces.

Usage

save_piece_images(
cfg = getOption("piecepackr.cfg", pp_cfg()),
directory = tempdir(),
format = "svg",
angle = 0

)

Arguments

cfg Piecepack configuration list

directory Directory where to place images

format Character vector of formats to save images in

angle Numeric vector of angles to rotate images (in degrees)

Examples

May take more than 5 seconds on CRAN server
if (all(capabilities(c("cairo", "png")))) {

cfg <- pp_cfg(list(suit_color="darkred,black,darkgreen,darkblue,grey"))
save_piece_images(cfg, directory=tempdir(), format="svg", angle=0)
save_piece_images(cfg, directory=tempdir(), format="png", angle=90)

}

44 save_piece_obj

save_piece_obj Save Wavefront OBJ files of board game pieces

Description

save_piece_obj saves Wavefront OBJ files (including associated MTL and texture image) of board
game pieces.

Usage

save_piece_obj(
piece_side = "tile_face",
suit = 1,
rank = 1,
cfg = getOption("piecepackr.cfg", pp_cfg()),
...,
x = 0,
y = 0,
z = 0,
angle = 0,
axis_x = 0,
axis_y = 0,
width = NA,
height = NA,
depth = NA,
filename = tempfile(fileext = ".obj"),
scale = 1,
res = 72

)

Arguments

piece_side A string with piece and side separated by a underscore e.g. "coin_face"

suit Number of suit (starting from 1).

rank Number of rank (starting from 1)

cfg Piecepack configuration list or pp_cfg object, a list of pp_cfg objects, or a
character vector referring to names in envir or a character vector referring to
object names that can be retrieved by base::dynGet().

... Ignored.

x Where to place piece on x axis of viewport

y Where to place piece on y axis of viewport

z z-coordinate of the piece. Has no effect if op_scale is 0.

angle Angle (on xy plane) to draw piece at

axis_x First coordinate of the axis unit vector.

save_print_and_play 45

axis_y Second coordinate of the axis unit vector.

width Width of piece

height Height of piece

depth Depth (thickness) of piece. Has no effect if op_scale is 0.

filename Name of Wavefront OBJ object.

scale Multiplicative scaling factor to apply to width, height, and depth.

res Resolution of the faces.

Value

A list with named elements "obj", "mtl", "png" with the created filenames.

See Also

See geometry_utils for a discussion of the 3D rotation parameterization.

Examples

if (all(capabilities(c("cairo", "png")))) {
cfg <- game_systems("sans3d")$dominoes
files <- save_piece_obj("tile_face", suit = 3+1, rank=6+1, cfg = cfg)
print(files)

}

save_print_and_play Save piecepack print-and-play (PnP) file

Description

Save piecepack print-and-play (PnP) file

Usage

save_print_and_play(
cfg = getOption("piecepackr.cfg", pp_cfg()),
output_filename = "piecepack.pdf",
size = c("letter", "A4", "A5", "4x6"),
pieces = NULL,
arrangement = c("single-sided", "double-sided"),
dev = NULL,
dev.args = list(family = cfg$fontfamily, onefile = TRUE, units = "in", bg = "white",

res = 300),
quietly = FALSE,
...,
bleed = FALSE,
size_bleed = NULL

)

46 save_print_and_play

Arguments

cfg Piecepack configuration list or pp_cfg object
output_filename

Filename for print-and-play file

size PnP output size (currently supports either "letter", "A4", "A5", or "4x6"). This
is the targeted “trim” size of the print-and-play file (size_bleed can be used to
make the print-and-play file larger than this). Size "4x6" currently only supports
pieces = "piecepack" and doesn’t support bleed = TRUE. "A5" is in “portrait”
mode whereas the other sizes are in “landscape” mode.

pieces Character vector of desired PnP pieces. Supports "piecepack", "matchsticks",
"pyramids", "subpack", or "all". If NULL and combination of size / bleed val-
ues supports "matchsticks" and "pyramids" then defaults to c("piecepack",
"pyramids", "matchsticks") else just "piecepack".

arrangement Either "single-sided" or "double-sided". Ignored if size = "4x6".

dev Graphics device function to use. If NULL infer a reasonable choice.

dev.args Additional arguments to pass to dev (besides filename, width, and height).
Will filter out any names that aren’t in formals(dev).

quietly Whether to hide messages about missing metadata in the provided configuration.

... Currently ignored.

bleed If TRUE produce a variant print-and-play file with "bleed" zones and "crop marks"
around game pieces. Currently only supports pieces = "piecepack" and doesn’t
support size = "4x6".

size_bleed A list with names "top", "right", "bottom", "left" containing numeric values in-
dicating the inches "bleed" to add to the size of the print-and-play layout. The
default NULL means no such bleed added to "letter", "A4", "A5" layouts and a
small bleed added to "4x6" layouts (1/16" to top/bottom and 3/32" to left/right).
NB. multiply millimeters by 0.0393700787 to convert to inches. We currently
don’t support an asymmetric left/right bleed combined with arrangement =
"double-sided".

Examples

May take more than 5 seconds on CRAN servers
if (capabilities("cairo")) {

cfg <- pp_cfg(list(invert_colors.suited=TRUE))
cfg$description <- 'Piecepack with an "inverted" color scheme.'
cfg$title <- '"Inverted" piecepack'
cfg$copyright <- "\u00a9 2022 Trevor L Davis. Some Right Reserved."
cfg$spdx_id <- "CC-BY-4.0"
cfg$credit <- ""

file <- tempfile("my_pnp_file", fileext = ".pdf")
file_ds <- tempfile("my_pnp_file_ds", fileext = ".pdf")
file_a4 <- tempfile("my_pnp_file_a4", fileext = ".pdf")
file_a5 <- tempfile("my_pnp_file_a5", fileext = ".pdf")

scale_x_piece 47

save_print_and_play(cfg, file)
save_print_and_play(cfg, file_ds, arrangement="double-sided")
save_print_and_play(cfg, file_a4, size="A4", pieces="all")
save_print_and_play(cfg, file_a5, size="A5")

}

scale_x_piece ggplot2 game diagram scales

Description

scale_x_piece() and scale_y_piece() are wrappers around ggplot2::scale_x_continuous()
and ggplot2::scale_y_continuous() with "better" defaults for board game diagrams. label_letter()
labels breaks with letters and label_counting() labels breaks with positive integers to more easily
generate (i.e. chess) algebraic notation coordinates. breaks_counting() generates breaks of just
the positive integers within the limits.

Usage

scale_x_piece(
...,
name = NULL,
breaks = breaks_counting(),
minor_breaks = NULL,
labels = label_letter()

)

scale_y_piece(
...,
name = NULL,
breaks = breaks_counting(),
minor_breaks = NULL,
labels = label_counting()

)

label_letter()

label_counting()

breaks_counting()

Arguments

... Passed to ggplot2::scale_x_continuous() or ggplot2::scale_y_continuous().

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

48 scale_x_piece

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output (e.g.,

a function returned by scales::extended_breaks()). Note that for po-
sition scales, limits are provided after scale expansion. Also accepts rlang
lambda function notation.

minor_breaks One of:

• NULL for no minor breaks
• waiver() for the default breaks (one minor break between each major

break)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation. When the function has two argu-
ments, it will be given the limits and major breaks.

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath

for details.
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.

Value

scale_x_piece() and scale_y_piece() return ggplot2 scale objects. label_letter() and label_counting()
return functions suitable for use with the labels scale argument. breaks_counting() returns a
function suitable for use with the breaks scale argument.

Examples

if (require("ggplot2", quietly = TRUE) && require("tibble", quietly = TRUE)) {
envir <- game_systems("sans")
df_board <- tibble(piece_side = "board_face", suit = 3, rank = 8,

x = 4.5, y = 4.5)
df_w <- tibble(piece_side = "bit_face", suit = 6, rank = 1,

x = rep(1:8, 2), y = rep(1:2, each=8))
df_b <- tibble(piece_side = "bit_face", suit = 1, rank = 1,

x = rep(1:8, 2), y = rep(7:8, each=8))
df <- rbind(df_board, df_w, df_b)

`cfg` must be a character vector for `geom_piece()`
ggplot(df, aes_piece(df)) +

geom_piece(cfg = "checkers1", envir = envir) +
coord_fixed() +

spdx_license_list 49

scale_x_piece() +
scale_y_piece() +
theme_minimal(28) +
theme(panel.grid = element_blank())

}

spdx_license_list SPDX License List data

Description

spdx_license_list is a data frame of SPDX License List data.

Usage

spdx_license_list

Format

a data frame with eight variables:

id SPDX Identifier.

name Full name of license. For Creative Commons licenses these have been tweaked from the
SPDX version to more closely match the full name used by Creative Commons Foundation.

url URL for copy of license located at spdx.org

fsf Is this license considered Free/Libre by the FSF?

osi Is this license OSI approved?

deprecated Has this SPDFX Identifier been deprecated by SPDX?

badge Filename of appropriate “button mark” badge (if any) located in system.file("extdata/badges",
package = "piecepackr").

url_alt Alternative URL for license. Manually created for a subset of Creative Commons licenses.
Others taken from https://github.com/sindresorhus/spdx-license-list.

See Also

See https://spdx.org/licenses/ for more information.

https://github.com/sindresorhus/spdx-license-list
https://spdx.org/licenses/

Index

∗ datasets
spdx_license_list, 49

AA_to_R, 5
aabb_piece, 4
aes(), 15
aes_piece (geom_piece), 15
animate_piece, 7
as_pp_cfg (pp_cfg), 32

base::options(), 3
basicPieceGrob (basicPieceGrobs), 9
basicPieceGrobs, 9
borders(), 16
breaks_counting (scale_x_piece), 47

checkersGrob (piecepackr-defunct), 28
cleave (pp_utils), 38
concaveGrobFn (piecepackr-defunct), 28
convexGrobFn (piecepackr-defunct), 28
cropmarkGrob (grid.cropmark), 18

ellipse3d, 43

file2grob (pp_utils), 38
font_utils, 10
fortify(), 15

game_systems, 11
game_systems(), 34
geom_piece, 15
geometry_utils, 26, 28, 30, 45
geometry_utils (AA_to_R), 5
get_embedded_font (font_utils), 10
get_shape_grob_fn (piecepackr-defunct),

28
ggplot(), 15
ggplot2::scale_x_continuous(), 17, 47
ggplot2::scale_y_continuous(), 17, 47
grid.cropmark, 18
grid.piece, 20

grid.piece(), 7, 31, 40
grid::gpar(), 36
grid::unit(), 19, 22
gridGeometry::grid.polyclip(), 36
gridlinesGrob (piecepackr-defunct), 28
gridpattern::patternGrob(), 36

halmaGrob (piecepackr-defunct), 28
has_font (font_utils), 10
hexlinesGrob (piecepackr-defunct), 28

inch (pp_utils), 38
is_color_invisible (pp_utils), 38
is_pp_cfg (pp_cfg), 32

kiteGrob (piecepackr-defunct), 28

label_counting (scale_x_piece), 47
label_letter (scale_x_piece), 47
lambda, 48
layer position, 16
layer stat, 16

matGrob (piecepackr-defunct), 28

op_transform, 23

picturePieceGrobFn (basicPieceGrobs), 9
piece, 24
piece(), 7, 31, 40, 43
piece3d, 26
piece3d(), 7, 31, 40, 43
piece_mesh, 29
piece_mesh(), 7, 40, 43
pieceGrob (grid.piece), 20
pieceGrob(), 16, 17, 31
piecepackr (piecepackr-package), 2
piecepackr-defunct, 28
piecepackr-package, 2
pmap_piece, 31
pmap_piece(), 22, 40

50

INDEX 51

pp_cfg, 13, 32
pp_cfg(), 43
pp_shape, 35
pp_utils, 38
previewLayoutGrob (basicPieceGrobs), 9
pyramidGrob (piecepackr-defunct), 28
pyramidTopGrob (basicPieceGrobs), 9

R_to_AA (AA_to_R), 5
R_x (AA_to_R), 5
R_y (AA_to_R), 5
R_z (AA_to_R), 5
render_piece, 39
render_piece(), 32
rgl::material3d(), 28

save_ellipsoid_obj, 41
save_peg_doll_obj (save_ellipsoid_obj),

41
save_piece_images, 43
save_piece_obj, 44
save_piece_obj(), 43
save_print_and_play, 45
scale_x_piece, 47
scale_x_piece(), 17
scale_y_piece (scale_x_piece), 47
scale_y_piece(), 17
scales::extended_breaks(), 48
spdx_license_list, 49

to_degrees (AA_to_R), 5
to_hexpack (game_systems), 11
to_r (AA_to_R), 5
to_radians (AA_to_R), 5
to_subpack (game_systems), 11
to_t (AA_to_R), 5
to_x (AA_to_R), 5
to_y (AA_to_R), 5
transformation object, 48
Trig, 6

	piecepackr-package
	aabb_piece
	AA_to_R
	animate_piece
	basicPieceGrobs
	font_utils
	game_systems
	geom_piece
	grid.cropmark
	grid.piece
	op_transform
	piece
	piece3d
	piecepackr-defunct
	piece_mesh
	pmap_piece
	pp_cfg
	pp_shape
	pp_utils
	render_piece
	save_ellipsoid_obj
	save_piece_images
	save_piece_obj
	save_print_and_play
	scale_x_piece
	spdx_license_list
	Index

